×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

A qubit related analogy of the Heisenberg uncertainty principle can be addressed by interpreting the computational (bit) basis as position and the diagonal (sign) basis as velocity (momentum), and showing that one cannot measure both at the same time?

by dkarayiannakis / Sunday, 05 May 2024 / Published in Quantum Information, EITC/QI/QIF Quantum Information Fundamentals, Introduction to Quantum Computation, N-qubit systems

In the realm of quantum information and computation, the Heisenberg uncertainty principle finds a compelling analogy when considering qubits. Qubits, the fundamental units of quantum information, exhibit properties that can be likened to the uncertainty principle in quantum mechanics. By associating the computational basis with position and the diagonal basis with velocity (momentum), one can draw parallels to the inability to precisely measure both position and momentum simultaneously. This analogy sheds light on the inherent limitations and unique characteristics of qubits in quantum computation.

In classical physics, the Heisenberg uncertainty principle states that the more precisely the position of a particle is known, the less precisely its momentum can be determined, and vice versa. This principle arises from the wave-particle duality of quantum mechanics, where the act of measurement disturbs the system being measured. Similarly, in the quantum realm of qubits, the computational basis (|0⟩ and |1⟩ states) can be equated to the position of a particle, while the diagonal basis (|+⟩ and |−⟩ states) can be likened to its momentum.

When a qubit is in a superposition of states, such as in the |+⟩ or |−⟩ basis, it possesses a certain amount of uncertainty in terms of its computational basis states |0⟩ and |1⟩. This uncertainty reflects the inability to precisely determine the qubit's position in the computational basis while simultaneously knowing its momentum in the diagonal basis. Just as in the Heisenberg uncertainty principle, attempting to measure both properties with high precision at the same time is inherently limited by the quantum nature of the system.

Moreover, the analogy between qubits and the uncertainty principle extends to the concept of entanglement. Entanglement, a uniquely quantum phenomenon where the states of multiple qubits are correlated in such a way that the state of one qubit instantaneously affects the state of another, can be viewed through the lens of uncertainty. The entangled qubits exhibit a form of quantum correlation that defies classical intuition, much like how the uncertainty principle challenges classical notions of determinism.

In quantum computation, understanding the qubit-related analogy of the Heisenberg uncertainty principle provides valuable insights into the behavior of quantum systems and the constraints they impose on measurement and manipulation. By recognizing the limitations inherent in quantum information processing, researchers and practitioners can develop more robust algorithms and protocols that harness the power of quantum mechanics while navigating its intricacies.

The analogy between qubits and the Heisenberg uncertainty principle offers a rich perspective on the nature of quantum information and computation. By drawing parallels between the uncertainty in measuring position and momentum in quantum mechanics and the limitations of measuring qubit properties simultaneously, we deepen our understanding of the quantum world and its implications for information processing.

Other recent questions and answers regarding EITC/QI/QIF Quantum Information Fundamentals:

  • Are amplitudes of quantum states always real numbers?
  • How the quantum negation gate (quantum NOT or Pauli-X gate) operates?
  • Why is the Hadamard gate self-reversible?
  • If measure the 1st qubit of the Bell state in a certain basis and then measure the 2nd qubit in a basis rotated by a certain angle theta, the probability that you will obtain projection to the corresponding vector is equal to the square of sine of theta?
  • How many bits of classical information would be required to describe the state of an arbitrary qubit superposition?
  • How many dimensions has a space of 3 qubits?
  • Will the measurement of a qubit destroy its quantum superposition?
  • Can quantum gates have more inputs than outputs similarily as classical gates?
  • Does the universal family of quantum gates include the CNOT gate and the Hadamard gate?
  • What is a double-slit experiment?

View more questions and answers in EITC/QI/QIF Quantum Information Fundamentals

More questions and answers:

  • Field: Quantum Information
  • Programme: EITC/QI/QIF Quantum Information Fundamentals (go to the certification programme)
  • Lesson: Introduction to Quantum Computation (go to related lesson)
  • Topic: N-qubit systems (go to related topic)
Tagged under: Quantum Algorithms, Quantum Computing, Quantum Entanglement, Quantum Information, Quantum Mechanics, Qubit Properties
Home » EITC/QI/QIF Quantum Information Fundamentals / Introduction to Quantum Computation / N-qubit systems / Quantum Information » A qubit related analogy of the Heisenberg uncertainty principle can be addressed by interpreting the computational (bit) basis as position and the diagonal (sign) basis as velocity (momentum), and showing that one cannot measure both at the same time?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Quantum Information
    • Web Development
    • Cloud Computing
    • Artificial Intelligence
    • Cybersecurity
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.