×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

How can we overcome the challenges of simulating an NFSM by using a DFSM?

by EITCA Academy / Wednesday, 02 August 2023 / Published in Cybersecurity, EITC/IS/CCTF Computational Complexity Theory Fundamentals, Finite State Machines, Formal definition of Nondeterministic Finite State Machines, Examination review

Simulating a Non-Deterministic Finite State Machine (NFSM) using a Deterministic Finite State Machine (DFSM) poses several challenges. However, with careful consideration and appropriate techniques, these challenges can be overcome. In this response, we will explore the challenges and provide strategies to address them.

One of the main challenges in simulating an NFSM with a DFSM lies in handling the non-determinism of the NFSM. A DFSM is inherently deterministic, meaning that for any given input symbol and current state, there is only one possible transition. On the other hand, an NFSM allows for multiple possible transitions for a given input symbol and current state. To overcome this challenge, we need to find a way to represent all possible transitions of the NFSM in the DFSM.

One approach to address this challenge is to use the concept of a powerset construction. The powerset construction allows us to represent the set of all possible states of the NFSM as a single state in the DFSM. Each state in the DFSM corresponds to a subset of states in the NFSM. The transitions in the DFSM are then determined by considering all possible transitions from the states in the subset in the NFSM.

To illustrate this, let's consider an example. Suppose we have an NFSM with three states, q1, q2, and q3, and two input symbols, a and b. The NFSM has the following transitions:

q1 -a-> q2
q1 -a-> q3
q2 -b-> q1
q3 -a-> q2

To simulate this NFSM using a DFSM, we first need to construct the powerset of the NFSM's states. The powerset of {q1, q2, q3} is {{}, {q1}, {q2}, {q3}, {q1, q2}, {q1, q3}, {q2, q3}, {q1, q2, q3}}. Each subset represents a state in the DFSM.

Next, we determine the transitions in the DFSM. For each input symbol, we consider all possible transitions from the states in the subset. For example, for the input symbol 'a' and the subset {q1, q2}, we consider the transitions from q1 and q2 in the NFSM. Since q1 has a transition to q2 on 'a', and q2 has no transitions on 'a', the DFSM transition for the input symbol 'a' and the subset {q1, q2} is {q2}. By applying this process to all subsets and input symbols, we can determine the transitions of the DFSM.

Another challenge in simulating an NFSM with a DFSM is handling the acceptance of inputs. In an NFSM, an input is accepted if there exists at least one accepting state reachable from the initial state(s) for that input. In a DFSM, however, an input is accepted only if the final state reached is an accepting state. To address this challenge, we need to modify the acceptance criteria of the DFSM.

One way to modify the acceptance criteria is to consider any state in the DFSM that contains an accepting state from the NFSM as an accepting state in the DFSM. This means that if a subset in the DFSM contains at least one accepting state from the NFSM, it is considered an accepting state in the DFSM. By extending the acceptance criteria in this way, we can ensure that the DFSM accepts the same set of inputs as the NFSM.

Simulating an NFSM using a DFSM requires addressing the challenges of handling non-determinism and modifying the acceptance criteria. The powerset construction technique allows us to represent all possible transitions of the NFSM in the DFSM, while modifying the acceptance criteria ensures that the DFSM accepts the same set of inputs as the NFSM. By applying these techniques, we can overcome the challenges and successfully simulate an NFSM using a DFSM.

Other recent questions and answers regarding EITC/IS/CCTF Computational Complexity Theory Fundamentals:

  • Are regular languages equivalent with Finite State Machines?
  • Is PSPACE class not equal to the EXPSPACE class?
  • Is algorithmically computable problem a problem computable by a Turing Machine accordingly to the Church-Turing Thesis?
  • What is the closure property of regular languages under concatenation? How are finite state machines combined to represent the union of languages recognized by two machines?
  • Can every arbitrary problem be expressed as a language?
  • Is P complexity class a subset of PSPACE class?
  • Does every multi-tape Turing machine has an equivalent single-tape Turing machine?
  • What are the outputs of predicates?
  • Are lambda calculus and turing machines computable models that answers the question on what does computable mean?
  • Can we can prove that Np and P class are the same by finding an efficient polynomial solution for any NP complete problem on a deterministic TM?

View more questions and answers in EITC/IS/CCTF Computational Complexity Theory Fundamentals

More questions and answers:

  • Field: Cybersecurity
  • Programme: EITC/IS/CCTF Computational Complexity Theory Fundamentals (go to the certification programme)
  • Lesson: Finite State Machines (go to related lesson)
  • Topic: Formal definition of Nondeterministic Finite State Machines (go to related topic)
  • Examination review
Tagged under: Automata Theory, Computational Complexity Theory, Cybersecurity, Deterministic Finite State Machine, Formal Languages, Powerset Construction
Home » Cybersecurity / EITC/IS/CCTF Computational Complexity Theory Fundamentals / Examination review / Finite State Machines / Formal definition of Nondeterministic Finite State Machines » How can we overcome the challenges of simulating an NFSM by using a DFSM?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Cloud Computing
    • Artificial Intelligence
    • Quantum Information
    • Web Development
    • Cybersecurity
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.