×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What is the key space of an affine cipher?

by Emmanuel Udofia / Friday, 09 August 2024 / Published in Cybersecurity, EITC/IS/CCF Classical Cryptography Fundamentals, History of cryptography, Modular arithmetic and historical ciphers

The key space of an affine cipher is a fundamental concept in the study of classical cryptography, particularly within the domain of modular arithmetic and historical ciphers. Understanding the key space involves comprehending the range of possible keys that can be used within the affine cipher algorithm to encrypt and decrypt messages. The affine cipher is a type of monoalphabetic substitution cipher, which means each letter in the plaintext is mapped to a corresponding letter in the ciphertext by a mathematical function. The function used in an affine cipher is of the form:

    \[ E(x) = (ax + b) \mod m \]

where:
– E(x) is the encryption function.
– x is the numerical value of the plaintext letter.
– a and b are the keys of the cipher.
– m is the size of the alphabet.

To decrypt the ciphertext, the inverse function is used:

    \[ D(y) = a^{-1}(y - b) \mod m \]

where:
– D(y) is the decryption function.
– y is the numerical value of the ciphertext letter.
– a^{-1} is the modular multiplicative inverse of a modulo m.

The key space of the affine cipher is determined by the values of a and b. For the affine cipher to be a valid encryption method, a must be coprime with m, meaning that \gcd(a, m) = 1, where \gcd stands for the greatest common divisor. This requirement ensures that a has a modular multiplicative inverse, which is necessary for the decryption process.

Detailed Analysis of Key Space

Determining Valid Values for a

The first step in understanding the key space is to determine the valid values for a. Since a must be coprime with m, we need to count the number of integers between 1 and m-1 that are coprime with m. This count is given by Euler's Totient Function \phi(m). For example, if m = 26 (which is the size of the English alphabet), the values of a must be coprime with 26. The integers coprime with 26 are:

    \[ \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\} \]

Thus, there are 12 possible values for a when m = 26.

Determining Valid Values for b

The value of b can be any integer between 0 and m-1. For m = 26, this gives us 26 possible values for b:

    \[ \{0, 1, 2, \ldots, 25\} \]

Calculating the Total Key Space

The total key space is the product of the number of valid values for a and the number of valid values for b. Using the example where m = 26:

    \[ \text{Total Key Space} = \phi(26) \times 26 = 12 \times 26 = 312 \]

Therefore, the affine cipher with an alphabet size of 26 has a key space of 312 possible keys.

Example of Affine Cipher Encryption and Decryption

To illustrate the process of encryption and decryption using the affine cipher, let us consider an example with specific values for a and b.

Encryption Example

Let:
– a = 5
– b = 8
– m = 26

The encryption function is:

    \[ E(x) = (5x + 8) \mod 26 \]

Suppose we want to encrypt the plaintext letter 'H'. First, we convert 'H' to its numerical equivalent, which is 7 (assuming 'A' = 0, 'B' = 1, …, 'H' = 7).

    \[ E(7) = (5 \cdot 7 + 8) \mod 26 = (35 + 8) \mod 26 = 43 \mod 26 = 17 \]

The numerical value 17 corresponds to the letter 'R' in the alphabet. Thus, the plaintext letter 'H' is encrypted as 'R'.

Decryption Example

To decrypt the ciphertext letter 'R', we need to use the decryption function. First, we find the modular multiplicative inverse of a modulo m. The modular multiplicative inverse of 5 modulo 26 is the integer a^{-1} such that:

    \[ 5a^{-1} \equiv 1 \mod 26 \]

Using the Extended Euclidean Algorithm, we find that the modular multiplicative inverse of 5 modulo 26 is 21. Thus, the decryption function is:

    \[ D(y) = 21(y - 8) \mod 26 \]

Converting 'R' back to its numerical equivalent, which is 17:

    \[ D(17) = 21(17 - 8) \mod 26 = 21 \cdot 9 \mod 26 = 189 \mod 26 = 7 \]

The numerical value 7 corresponds to the letter 'H' in the alphabet. Thus, the ciphertext letter 'R' is decrypted back to 'H'.

Practical Considerations and Security

While the affine cipher provides a straightforward example of classical encryption using modular arithmetic, it is important to note that it is not secure by modern standards. The key space of 312 possible keys is relatively small, making it vulnerable to brute-force attacks. Additionally, the affine cipher is a type of monoalphabetic substitution cipher, which means it does not provide sufficient complexity to resist frequency analysis attacks. Each letter in the plaintext is mapped to a unique letter in the ciphertext, preserving the frequency distribution of the letters.

In practical terms, the affine cipher is primarily of historical and educational interest. It serves as an excellent example to illustrate the principles of modular arithmetic and the concept of key space in cryptography. However, for secure communication, modern cryptographic algorithms such as the Advanced Encryption Standard (AES) or the RSA algorithm are used, which provide significantly larger key spaces and enhanced security features.

The key space of an affine cipher is determined by the number of valid values for the keys a and b, where a must be coprime with the size of the alphabet m, and b can be any integer within the range of the alphabet size. For an alphabet size of 26, the key space consists of 312 possible keys. While the affine cipher is not secure by modern standards, it provides valuable insights into the principles of classical cryptography and modular arithmetic.

Other recent questions and answers regarding EITC/IS/CCF Classical Cryptography Fundamentals:

  • Is cryptography considered a part of cryptology and cryptanalysis?
  • Will a shift cipher with a key equal to 4 replace the letter d with the letter h in ciphertext?
  • Does the ECB mode breaks large input plaintext into subsequent blocks
  • Do identical plaintext map to identical cipher text of a letter frequency analysis attact against a substitution cipher
  • What is EEA ?
  • Are brute force attack always an exhausive key search?
  • In RSA cipher, does Alice need Bob’s public key to encrypt a message to Bob?
  • Can we use a block cipher to build a hash function or MAC?
  • What are initialization vectors?
  • How many part does a public and private key has in RSA cipher

View more questions and answers in EITC/IS/CCF Classical Cryptography Fundamentals

More questions and answers:

  • Field: Cybersecurity
  • Programme: EITC/IS/CCF Classical Cryptography Fundamentals (go to the certification programme)
  • Lesson: History of cryptography (go to related lesson)
  • Topic: Modular arithmetic and historical ciphers (go to related topic)
Tagged under: Affine Cipher, Brute-force Attack, Cryptography, Cybersecurity, Decryption, Encryption, Euler's Totient Function, Frequency Analysis, Historical Ciphers, Key Space, Modular Arithmetic
Home » Cybersecurity / EITC/IS/CCF Classical Cryptography Fundamentals / History of cryptography / Modular arithmetic and historical ciphers » What is the key space of an affine cipher?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Web Development
    • Cybersecurity
    • Quantum Information
    • Cloud Computing
    • Artificial Intelligence
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.