What types of algorithms for machine learning are there and how does one select them?
Machine learning is a subset of artificial intelligence that focuses on building systems capable of learning from data and making decisions or predictions based on that data. The choice of algorithm is important in machine learning, as it determines how the model will learn from the data and how effectively it will perform on unseen
When cleaning the data, how can one ensure the data is not biased?
Ensuring that data cleaning processes are free from bias is a critical concern in the field of machine learning, particularly when utilizing platforms such as Google Cloud Machine Learning. Bias during data cleaning can lead to skewed models, which in turn can produce inaccurate or unfair predictions. Addressing this issue requires a multifaceted approach encompassing
Should separate data be used in subsequent steps of training a machine learning model?
The process of training machine learning models typically involves multiple steps, each requiring specific data to ensure the model's effectiveness and accuracy. The seven steps of machine learning, as outlined, include data collection, data preparation, choosing a model, training the model, evaluating the model, parameter tuning, and making predictions. Each of these steps has distinct
What will hapen if the test sample is 90% while evaluation or predictive sample is 10%?
In the realm of machine learning, particularly when utilizing frameworks such as Google Cloud Machine Learning, the division of datasets into training, validation, and testing subsets is a fundamental step. This division is critical for the development of robust and generalizable predictive models. The specific case where the test sample constitutes 90% of the data
- Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, First steps in Machine Learning, The 7 steps of machine learning
What is an evaluation metric?
An evaluation metric in the field of artificial intelligence (AI) and machine learning (ML) is a quantitative measure used to assess the performance of a machine learning model. These metrics are important as they provide a standardized method to evaluate the effectiveness, efficiency, and accuracy of the model in making predictions or classifications based on
- Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, First steps in Machine Learning, The 7 steps of machine learning
Are advanced searching capabilities a Machine Learning use case?
Advanced searching capabilities are indeed a prominent use case of Machine Learning (ML). Machine Learning algorithms are designed to identify patterns and relationships within data to make predictions or decisions without being explicitly programmed. In the context of advanced searching capabilities, Machine Learning can significantly enhance the search experience by providing more relevant and accurate
Are batch size, epoch and dataset size all hyperparameters?
Batch size, epoch, and dataset size are indeed important aspects in machine learning and are commonly referred to as hyperparameters. To understand this concept, let's consider each term individually. Batch size: The batch size is a hyperparameter that defines the number of samples processed before the model's weights are updated during training. It plays a
- Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, First steps in Machine Learning, The 7 steps of machine learning
Does an unsupervised model need training although it has no labelled data?
An unsupervised model in machine learning does not require labeled data for training as it aims to find patterns and relationships within the data without predefined labels. Although unsupervised learning does not involve the use of labeled data, the model still needs to undergo a training process to learn the underlying structure of the data
What are the types of hyperparameter tuning?
Hyperparameter tuning is a important step in the machine learning process as it involves finding the optimal values for the hyperparameters of a model. Hyperparameters are parameters that are not learned from the data, but rather set by the user before training the model. They control the behavior of the learning algorithm and can significantly
What are some examples of hyperparameter tuning?
Hyperparameter tuning is a important step in the process of building and optimizing machine learning models. It involves adjusting the parameters that are not learned by the model itself, but rather set by the user prior to training. These parameters significantly impact the performance and behavior of the model, and finding the optimal values for

