×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What were the differences between the baseline, small, and bigger models in terms of architecture and performance?

by EITCA Academy / Saturday, 05 August 2023 / Published in Artificial Intelligence, EITC/AI/TFF TensorFlow Fundamentals, Overfitting and underfitting problems, Solving model’s overfitting and underfitting problems - part 2, Examination review

The differences between the baseline, small, and bigger models in terms of architecture and performance can be attributed to variations in the number of layers, units, and parameters used in each model. In general, the architecture of a neural network model refers to the organization and arrangement of its layers, while performance refers to how well the model can learn and make accurate predictions.

Starting with the baseline model, it is typically the simplest and most straightforward architecture. It usually consists of a single layer with a few units, also known as neurons or nodes. This model is often used as a starting point to establish a baseline performance for more complex models. Due to its simplicity, the baseline model may struggle to capture intricate patterns in the data and may exhibit underfitting, where the model fails to capture the underlying relationships in the data.

Moving on to the small model, it typically includes multiple layers with a moderate number of units. By increasing the number of layers and units, the small model becomes more capable of capturing complex patterns in the data. This increased capacity allows the model to learn more intricate representations and potentially improve its performance compared to the baseline model. However, there is a trade-off between model complexity and the risk of overfitting. Overfitting occurs when the model becomes too specialized in the training data and fails to generalize well to unseen data.

Finally, the bigger model is characterized by a larger number of layers and units, resulting in a significantly more complex architecture. With a higher capacity for learning, the bigger model has the potential to capture even more intricate patterns in the data. However, this increased complexity also increases the risk of overfitting. To mitigate overfitting, techniques such as regularization or dropout can be applied during the training process.

In terms of performance, the baseline model is likely to have the lowest accuracy due to its simplicity and limited capacity to capture complex patterns. The small model, with its increased capacity, may exhibit improved performance compared to the baseline model. However, if the small model becomes too complex, it may suffer from overfitting and perform poorly on unseen data. The bigger model, with its even higher capacity, has the potential to achieve better performance than the small model if properly regularized to prevent overfitting.

To summarize, the baseline, small, and bigger models differ in terms of their architecture and performance. The baseline model is the simplest with a single layer, while the small and bigger models have multiple layers and more units. The small model strikes a balance between complexity and performance, while the bigger model has a higher capacity for learning but requires careful regularization to avoid overfitting.

Other recent questions and answers regarding EITC/AI/TFF TensorFlow Fundamentals:

  • What is the maximum number of steps that a RNN can memorize avoiding the vanishing gradient problem and the maximum steps that LSTM can memorize?
  • Is a backpropagation neural network similar to a recurrent neural network?
  • How can one use an embedding layer to automatically assign proper axes for a plot of representation of words as vectors?
  • What is the purpose of max pooling in a CNN?
  • How is the feature extraction process in a convolutional neural network (CNN) applied to image recognition?
  • Is it necessary to use an asynchronous learning function for machine learning models running in TensorFlow.js?
  • What is the TensorFlow Keras Tokenizer API maximum number of words parameter?
  • Can TensorFlow Keras Tokenizer API be used to find most frequent words?
  • What is TOCO?
  • What is the relationship between a number of epochs in a machine learning model and the accuracy of prediction from running the model?

View more questions and answers in EITC/AI/TFF TensorFlow Fundamentals

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/TFF TensorFlow Fundamentals (go to the certification programme)
  • Lesson: Overfitting and underfitting problems (go to related lesson)
  • Topic: Solving model’s overfitting and underfitting problems - part 2 (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Model Architecture, Neural Networks, Overfitting, Performance, Underfitting
Home » Artificial Intelligence / EITC/AI/TFF TensorFlow Fundamentals / Examination review / Overfitting and underfitting problems / Solving model’s overfitting and underfitting problems - part 2 » What were the differences between the baseline, small, and bigger models in terms of architecture and performance?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Quantum Information
    • Web Development
    • Cloud Computing
    • Cybersecurity
    • Artificial Intelligence
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.