×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

How does Neural Structured Learning leverage citation information from the natural graph in document classification?

by EITCA Academy / Saturday, 05 August 2023 / Published in Artificial Intelligence, EITC/AI/TFF TensorFlow Fundamentals, Neural Structured Learning with TensorFlow, Training with natural graphs, Examination review

Neural Structured Learning (NSL) is a framework developed by Google Research that enhances the training of deep learning models by leveraging structured information in the form of graphs. In the context of document classification, NSL utilizes citation information from a natural graph to improve the accuracy and robustness of the classification task.

A natural graph is a representation of the relationships between documents based on their citation patterns. In this graph, nodes represent documents, and edges represent citations between them. By incorporating this information into the training process, NSL encourages the model to learn from the graph structure and the associated citation relationships.

To leverage citation information from the natural graph in document classification, NSL follows a two-step process: graph construction and graph regularization.

In the graph construction step, NSL constructs a graph by mapping each document to a node and establishing edges between nodes based on their citation relationships. The citation information can be obtained from various sources, such as bibliographic databases or web scraping. Once the graph is constructed, it serves as a source of additional information for the model.

In the graph regularization step, NSL incorporates the graph into the training process to improve the model's performance. During training, NSL encourages the model to consider both the document features and the graph structure by adding a regularization term to the loss function. This regularization term penalizes the model for making predictions that are inconsistent with the graph structure. By doing so, NSL encourages the model to learn representations that are not only based on the document content but also take into account the citation relationships captured in the graph.

By leveraging citation information from the natural graph, NSL provides several benefits for document classification. Firstly, it allows the model to capture the semantic relationships between documents based on their citation patterns. For example, if two documents are frequently cited together, NSL can learn to associate them and use this information to improve classification accuracy.

Secondly, NSL enhances the robustness of the model by incorporating global information from the graph. Even if a document has noisy or incomplete content, NSL can leverage the citation relationships to make more accurate predictions. For instance, if a document has ambiguous content, NSL can rely on the citation information to determine its category.

Furthermore, NSL enables the transfer of knowledge across related documents. By considering the graph structure, NSL can propagate information between documents, allowing the model to benefit from the labeled data of neighboring documents. This is particularly useful when the labeled data is limited or when there is a class imbalance in the dataset.

Neural Structured Learning leverages citation information from the natural graph in document classification by constructing a graph based on citation relationships and incorporating it into the training process through graph regularization. This approach enhances the model's accuracy, robustness, and ability to transfer knowledge across related documents.

Other recent questions and answers regarding EITC/AI/TFF TensorFlow Fundamentals:

  • What is the maximum number of steps that a RNN can memorize avoiding the vanishing gradient problem and the maximum steps that LSTM can memorize?
  • Is a backpropagation neural network similar to a recurrent neural network?
  • How can one use an embedding layer to automatically assign proper axes for a plot of representation of words as vectors?
  • What is the purpose of max pooling in a CNN?
  • How is the feature extraction process in a convolutional neural network (CNN) applied to image recognition?
  • Is it necessary to use an asynchronous learning function for machine learning models running in TensorFlow.js?
  • What is the TensorFlow Keras Tokenizer API maximum number of words parameter?
  • Can TensorFlow Keras Tokenizer API be used to find most frequent words?
  • What is TOCO?
  • What is the relationship between a number of epochs in a machine learning model and the accuracy of prediction from running the model?

View more questions and answers in EITC/AI/TFF TensorFlow Fundamentals

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/TFF TensorFlow Fundamentals (go to the certification programme)
  • Lesson: Neural Structured Learning with TensorFlow (go to related lesson)
  • Topic: Training with natural graphs (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Citation Information, Document Classification, Graph Construction, Graph Regularization, Natural Graph, Neural Structured Learning
Home » Artificial Intelligence / EITC/AI/TFF TensorFlow Fundamentals / Examination review / Neural Structured Learning with TensorFlow / Training with natural graphs » How does Neural Structured Learning leverage citation information from the natural graph in document classification?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Web Development
    • Artificial Intelligence
    • Quantum Information
    • Cloud Computing
    • Cybersecurity
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.