×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

How can a base model be defined and wrapped with the graph regularization wrapper class in Neural Structured Learning?

by EITCA Academy / Saturday, 05 August 2023 / Published in Artificial Intelligence, EITC/AI/TFF TensorFlow Fundamentals, Neural Structured Learning with TensorFlow, Training with natural graphs, Examination review

To define a base model and wrap it with the graph regularization wrapper class in Neural Structured Learning (NSL), you need to follow a series of steps. NSL is a framework built on top of TensorFlow that allows you to incorporate graph-structured data into your machine learning models. By leveraging the connections between data points, NSL enhances the learning process and improves model performance.

First, let's start by defining a base model. A base model is a TensorFlow model that you want to train or use for inference. It can be any model, such as a convolutional neural network (CNN), recurrent neural network (RNN), or a custom model architecture. The base model should be designed to handle the specific task at hand, whether it is image classification, text generation, or any other machine learning task.

Once you have your base model defined, you can proceed to wrap it with the graph regularization wrapper class in NSL. This wrapper class provides the necessary functionality to incorporate graph-structured data into your model. Graph regularization is a technique that encourages the model to produce similar outputs for similar inputs connected in the graph.

To wrap the base model, you need to perform the following steps:

1. Import the required libraries:

python
import tensorflow as tf
import neural_structured_learning as nsl

2. Define the base model:

python
base_model = ...  # Define your base model here

3. Wrap the base model with the graph regularization wrapper:

python
graph_model = nsl.keras.GraphRegularization(base_model, graph_regularization_config)

Here, `graph_regularization_config` is an instance of `nsl.configs.GraphRegConfig` that specifies the hyperparameters for graph regularization. It includes parameters such as the graph regularization multiplier and the neighbor selection strategy.

4. Compile the graph model:

python
graph_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

You can use any optimizer, loss function, and metrics suitable for your specific task.

5. Train the graph model:

python
graph_model.fit(train_dataset, epochs=num_epochs)

Here, `train_dataset` is a TensorFlow dataset containing the training data, and `num_epochs` is the number of training epochs.

By following these steps, you can define a base model and wrap it with the graph regularization wrapper class in NSL. This allows you to incorporate graph-structured data into your machine learning models and improve their performance by leveraging the connections between data points.

Other recent questions and answers regarding EITC/AI/TFF TensorFlow Fundamentals:

  • What is the maximum number of steps that a RNN can memorize avoiding the vanishing gradient problem and the maximum steps that LSTM can memorize?
  • Is a backpropagation neural network similar to a recurrent neural network?
  • How can one use an embedding layer to automatically assign proper axes for a plot of representation of words as vectors?
  • What is the purpose of max pooling in a CNN?
  • How is the feature extraction process in a convolutional neural network (CNN) applied to image recognition?
  • Is it necessary to use an asynchronous learning function for machine learning models running in TensorFlow.js?
  • What is the TensorFlow Keras Tokenizer API maximum number of words parameter?
  • Can TensorFlow Keras Tokenizer API be used to find most frequent words?
  • What is TOCO?
  • What is the relationship between a number of epochs in a machine learning model and the accuracy of prediction from running the model?

View more questions and answers in EITC/AI/TFF TensorFlow Fundamentals

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/TFF TensorFlow Fundamentals (go to the certification programme)
  • Lesson: Neural Structured Learning with TensorFlow (go to related lesson)
  • Topic: Training with natural graphs (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Graph Regularization, Machine Learning, Model Wrapping, Neural Structured Learning, TensorFlow
Home » Artificial Intelligence / EITC/AI/TFF TensorFlow Fundamentals / Examination review / Neural Structured Learning with TensorFlow / Training with natural graphs » How can a base model be defined and wrapped with the graph regularization wrapper class in Neural Structured Learning?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Cybersecurity
    • Artificial Intelligence
    • Cloud Computing
    • Quantum Information
    • Web Development
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.