×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What is the purpose of scaling the features in regression training and testing?

by EITCA Academy / Monday, 07 August 2023 / Published in Artificial Intelligence, EITC/AI/MLP Machine Learning with Python, Regression, Regression training and testing, Examination review

Scaling the features in regression training and testing plays a important role in achieving accurate and reliable results. The purpose of scaling is to normalize the features, ensuring that they are on a similar scale and have a comparable impact on the regression model. This normalization process is essential for various reasons, including improving convergence, preventing numerical instability, and enhancing the interpretability of the model.

One of the primary reasons for scaling features is to aid in the convergence of optimization algorithms. Many regression algorithms, such as gradient descent, rely on iterative optimization techniques to find the optimal parameters that minimize the error between predicted and actual values. When features have different scales, the optimization process may take longer to converge, or it may even fail to converge at all. By scaling the features, we can alleviate this issue and improve the convergence rate of the algorithm.

Moreover, scaling features helps to prevent numerical instability. Large differences in feature scales can lead to numerical overflow or underflow, which can cause computational errors and produce incorrect results. Scaling the features ensures that the numerical calculations involved in the regression process are stable and accurate.

Another advantage of scaling features is that it facilitates the interpretation of the regression model. When the features are on different scales, it becomes challenging to compare their coefficients and determine their relative importance. Scaling the features to a common scale allows us to compare the coefficients directly and assess the impact of each feature on the regression model. This interpretability is particularly valuable when we want to understand the underlying relationships between the features and the target variable.

To illustrate the importance of scaling in regression, consider a simple example where we have two features: "age" and "income." The "age" feature ranges from 0 to 100, while the "income" feature ranges from 0 to 100,000. If we don't scale these features and fit a regression model, the coefficient for "income" will likely dominate the coefficient for "age" due to the difference in scales. This dominance may mislead us into thinking that "income" has a stronger impact on the target variable, when in reality, it may not be the case. Scaling the features allows us to compare the coefficients directly and make more accurate interpretations.

Scaling the features in regression training and testing is essential for achieving accurate and reliable results. It improves convergence, prevents numerical instability, and enhances the interpretability of the model. By normalizing the feature scales, we ensure that each feature has a comparable impact on the regression model, leading to more robust and meaningful insights.

Other recent questions and answers regarding EITC/AI/MLP Machine Learning with Python:

  • How is the b parameter in linear regression (the y-intercept of the best fit line) calculated?
  • What role do support vectors play in defining the decision boundary of an SVM, and how are they identified during the training process?
  • In the context of SVM optimization, what is the significance of the weight vector `w` and bias `b`, and how are they determined?
  • What is the purpose of the `visualize` method in an SVM implementation, and how does it help in understanding the model's performance?
  • How does the `predict` method in an SVM implementation determine the classification of a new data point?
  • What is the primary objective of a Support Vector Machine (SVM) in the context of machine learning?
  • How can libraries such as scikit-learn be used to implement SVM classification in Python, and what are the key functions involved?
  • Explain the significance of the constraint (y_i (mathbf{x}_i cdot mathbf{w} + b) geq 1) in SVM optimization.
  • What is the objective of the SVM optimization problem and how is it mathematically formulated?
  • How does the classification of a feature set in SVM depend on the sign of the decision function (text{sign}(mathbf{x}_i cdot mathbf{w} + b))?

View more questions and answers in EITC/AI/MLP Machine Learning with Python

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/MLP Machine Learning with Python (go to the certification programme)
  • Lesson: Regression (go to related lesson)
  • Topic: Regression training and testing (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Feature Scaling, Machine Learning, Numerical Stability, Optimization Algorithms, Regression Analysis
Home » Artificial Intelligence / EITC/AI/MLP Machine Learning with Python / Examination review / Regression / Regression training and testing » What is the purpose of scaling the features in regression training and testing?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Cloud Computing
    • Quantum Information
    • Cybersecurity
    • Artificial Intelligence
    • Web Development
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.