×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What is the main advantage of the mean shift clustering algorithm compared to k-means?

by EITCA Academy / Monday, 07 August 2023 / Published in Artificial Intelligence, EITC/AI/MLP Machine Learning with Python, Clustering, k-means and mean shift, Mean shift with titanic dataset, Examination review

The main advantage of the mean shift clustering algorithm compared to k-means lies in its ability to automatically determine the number of clusters and adapt to the shape and size of the data distribution. Mean shift is a non-parametric algorithm, which means it does not require any assumptions about the underlying data distribution. This flexibility allows it to handle complex and irregularly shaped clusters more effectively.

K-means, on the other hand, is a parametric algorithm that requires the user to specify the number of clusters in advance. This can be a challenging task, especially when dealing with large and high-dimensional datasets where the optimal number of clusters may not be obvious. If the number of clusters is set incorrectly, k-means may produce suboptimal results. Additionally, k-means assumes that clusters are spherical and have equal variance, which limits its ability to handle clusters of different shapes and sizes.

Mean shift overcomes these limitations by using a density estimation technique to find the modes of the data distribution, which correspond to the cluster centers. It starts by randomly selecting data points as initial cluster centers and then iteratively shifts them towards the modes of the distribution. The shift is determined by the mean shift vector, which is calculated as the weighted average of the data points within a certain radius around each cluster center.

By iteratively updating the cluster centers based on the mean shift vector, mean shift effectively converges to the modes of the data distribution. Since it does not make any assumptions about the shape or size of the clusters, it can adapt to the inherent structure of the data and discover clusters of arbitrary shapes. This makes mean shift particularly useful in applications where the clusters are not well-defined or have complex geometries, such as image segmentation or object tracking.

To illustrate the advantage of mean shift over k-means, let's consider the task of clustering a dataset containing different shapes of objects, such as circles, squares, and triangles. K-means, being a parametric algorithm, would struggle to accurately cluster these objects, as it assumes spherical clusters with equal variance. In contrast, mean shift would be able to adapt to the shape of each object and accurately identify the clusters.

The main advantage of the mean shift clustering algorithm over k-means is its ability to automatically determine the number of clusters and adapt to the shape and size of the data distribution. This flexibility allows mean shift to handle complex and irregularly shaped clusters more effectively, making it a powerful tool in various applications.

Other recent questions and answers regarding Clustering, k-means and mean shift:

  • How does mean shift dynamic bandwidth adaptively adjust the bandwidth parameter based on the density of the data points?
  • What is the purpose of assigning weights to feature sets in the mean shift dynamic bandwidth implementation?
  • How is the new radius value determined in the mean shift dynamic bandwidth approach?
  • How does the mean shift dynamic bandwidth approach handle finding centroids correctly without hard coding the radius?
  • What is the limitation of using a fixed radius in the mean shift algorithm?
  • How can we optimize the mean shift algorithm by checking for movement and breaking the loop when centroids have converged?
  • How does the mean shift algorithm achieve convergence?
  • What is the difference between bandwidth and radius in the context of mean shift clustering?
  • How is the mean shift algorithm implemented in Python from scratch?
  • What are the basic steps involved in the mean shift algorithm?

View more questions and answers in Clustering, k-means and mean shift

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/MLP Machine Learning with Python (go to the certification programme)
  • Lesson: Clustering, k-means and mean shift (go to related lesson)
  • Topic: Mean shift with titanic dataset (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Clustering, Density Estimation, K-means, Mean Shift, Non-parametric
Home » Artificial Intelligence / Clustering, k-means and mean shift / EITC/AI/MLP Machine Learning with Python / Examination review / Mean shift with titanic dataset » What is the main advantage of the mean shift clustering algorithm compared to k-means?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Web Development
    • Quantum Information
    • Artificial Intelligence
    • Cybersecurity
    • Cloud Computing
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.