×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

Is it feasible to use ML to spot bias in data from another ML solution?

by Anne Marie Corless / Wednesday, 08 November 2023 / Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, Introduction, What is machine learning

Using machine learning (ML) to spot bias in data from another ML solution is indeed feasible. ML algorithms are designed to learn patterns and make predictions based on the patterns they find in the data. However, these algorithms can also inadvertently learn and perpetuate biases present in the training data. Therefore, it becomes important to develop methods to identify and mitigate bias in ML models.

To spot bias in data from another ML solution, one approach is to use additional ML techniques specifically designed for bias detection. These techniques aim to uncover biases by analyzing the data and the predictions made by the ML model. There are several methods that can be employed for this purpose.

One common approach is to examine the distribution of the data and identify any disparities or imbalances. This can be done by analyzing the demographic characteristics of the data and comparing them across different groups. For example, if a ML model is trained on a dataset that is predominantly composed of male individuals, it may exhibit biases when making predictions for female individuals. By analyzing the distribution of gender in the data, one can identify such biases.

Another approach is to assess the fairness of the ML model's predictions. This can be done by comparing the predictions made by the model across different groups and evaluating whether there are any significant differences. For instance, if a ML model consistently predicts higher credit scores for individuals from a certain racial group, it may indicate bias in the model. Statistical tests can be used to quantify and measure these differences.

Furthermore, it is also possible to analyze the features used by the ML model to make predictions. By examining the importance and impact of different features, one can identify if certain features are disproportionately influencing the model's predictions. This can help uncover biases that may exist in the data.

It is important to note that bias detection is an ongoing process and should be performed at multiple stages of the ML pipeline. This includes the data collection and preprocessing stages, as well as during the training and evaluation of the ML model. By incorporating bias detection techniques throughout the ML workflow, one can ensure that biases are identified and addressed effectively.

It is feasible to use ML to spot bias in data from another ML solution. By employing specific bias detection techniques, one can analyze the data, evaluate the fairness of the model's predictions, and assess the impact of different features. This helps in identifying and mitigating biases in ML models, promoting fairness and inclusivity.

Other recent questions and answers regarding EITC/AI/GCML Google Cloud Machine Learning:

  • What types of algorithms for machine learning are there and how does one select them?
  • When a kernel is forked with data and the original is private, can the forked one be public and if so is not a privacy breach?
  • Can NLG model logic be used for purposes other than NLG, such as trading forecasting?
  • What are some more detailed phases of machine learning?
  • Is TensorBoard the most recommended tool for model visualization?
  • When cleaning the data, how can one ensure the data is not biased?
  • How is machine learning helping customers in purchasing services and products?
  • Why is machine learning important?
  • What are the different types of machine learning?
  • Should separate data be used in subsequent steps of training a machine learning model?

View more questions and answers in EITC/AI/GCML Google Cloud Machine Learning

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/GCML Google Cloud Machine Learning (go to the certification programme)
  • Lesson: Introduction (go to related lesson)
  • Topic: What is machine learning (go to related topic)
Tagged under: Artificial Intelligence, Bias Detection, Data Analysis, Fairness, Machine Learning, ML Pipeline
Home » Artificial Intelligence / EITC/AI/GCML Google Cloud Machine Learning / Introduction / What is machine learning » Is it feasible to use ML to spot bias in data from another ML solution?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Artificial Intelligence
    • Quantum Information
    • Cloud Computing
    • Cybersecurity
    • Web Development
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.