×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What is the purpose of the "sample_handling" function in the preprocessing step?

by EITCA Academy / Tuesday, 08 August 2023 / Published in Artificial Intelligence, EITC/AI/DLTF Deep Learning with TensorFlow, TensorFlow, Preprocessing conitnued, Examination review

The "sample_handling" function plays a important role in the preprocessing step of deep learning with TensorFlow. Its purpose is to handle and manipulate the input data samples in a way that prepares them for further processing and analysis. By performing various operations on the samples, this function ensures that the data is in a suitable format and condition for training and inference tasks.

One of the primary objectives of the "sample_handling" function is to standardize the input data. This involves transforming the samples into a consistent format that can be easily understood and processed by the deep learning model. For instance, it may involve resizing images to a specific resolution, normalizing pixel values to a certain range, or converting textual data into a numerical representation. By standardizing the samples, the function helps to eliminate inconsistencies and improve the model's ability to learn from the data effectively.

Furthermore, the "sample_handling" function often involves data augmentation techniques. Data augmentation refers to the process of generating additional training examples by applying various transformations to the existing samples. These transformations can include random rotations, translations, flips, or changes in lighting conditions. By augmenting the data, the function helps to increase the diversity and variability of the training set, which can enhance the model's ability to generalize and perform well on unseen data.

Another important aspect of the "sample_handling" function is data preprocessing and cleaning. This step involves removing any noise, outliers, or irrelevant information from the samples. For example, in natural language processing tasks, it may involve removing stop words, punctuation, or performing stemming or lemmatization. In image processing tasks, it may involve removing artifacts or irrelevant background elements. By preprocessing and cleaning the data, the function helps to improve the quality and reliability of the input samples, leading to better model performance.

Additionally, the "sample_handling" function may involve splitting the data into training, validation, and testing sets. This is a important step in deep learning as it allows for proper evaluation of the model's performance. By splitting the data, the function ensures that the model is trained on a subset of the data, validated on another subset, and finally tested on a separate subset. This separation helps to prevent overfitting, where the model becomes too specialized to the training data and performs poorly on unseen data.

The "sample_handling" function in the preprocessing step of deep learning with TensorFlow serves multiple purposes. It standardizes the input data, performs data augmentation to increase variability, preprocesses and cleans the data, and splits it into training, validation, and testing sets. By accomplishing these tasks effectively, the function prepares the data for training and inference, enabling the deep learning model to learn and generalize from the samples more efficiently.

Other recent questions and answers regarding EITC/AI/DLTF Deep Learning with TensorFlow:

  • Does a Convolutional Neural Network generally compress the image more and more into feature maps?
  • Are deep learning models based on recursive combinations?
  • TensorFlow cannot be summarized as a deep learning library.
  • Convolutional neural networks constitute the current standard approach to deep learning for image recognition.
  • Why does the batch size control the number of examples in the batch in deep learning?
  • Why does the batch size in deep learning need to be set statically in TensorFlow?
  • Does the batch size in TensorFlow have to be set statically?
  • How does batch size control the number of examples in the batch, and in TensorFlow does it need to be set statically?
  • In TensorFlow, when defining a placeholder for a tensor, should one use a placeholder function with one of the parameters specifying the shape of the tensor, which, however, does not need to be set?
  • In deep learning, are SGD and AdaGrad examples of cost functions in TensorFlow?

View more questions and answers in EITC/AI/DLTF Deep Learning with TensorFlow

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/DLTF Deep Learning with TensorFlow (go to the certification programme)
  • Lesson: TensorFlow (go to related lesson)
  • Topic: Preprocessing conitnued (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Data Augmentation, Data Cleaning, Deep Learning, Preprocessing, TensorFlow
Home » Artificial Intelligence / EITC/AI/DLTF Deep Learning with TensorFlow / Examination review / Preprocessing conitnued / TensorFlow » What is the purpose of the "sample_handling" function in the preprocessing step?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Quantum Information
    • Artificial Intelligence
    • Cloud Computing
    • Cybersecurity
    • Web Development
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.