×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

SIGN IN YOUR ACCOUNT TO HAVE ACCESS TO DIFFERENT FEATURES

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR DETAILS?

AAH, WAIT, I REMEMBER NOW!

CREATE ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • SUPPORT

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

What is the LSTM cell and why is it used in the RNN implementation?

by EITCA Academy / Tuesday, 08 August 2023 / Published in Artificial Intelligence, EITC/AI/DLTF Deep Learning with TensorFlow, Recurrent neural networks in TensorFlow, RNN example in Tensorflow, Examination review

The LSTM cell, short for Long Short-Term Memory cell, is a fundamental component of recurrent neural networks (RNNs) used in the field of artificial intelligence. It is specifically designed to address the vanishing gradient problem that arises in traditional RNNs, which hinders their ability to capture long-term dependencies in sequential data. In this explanation, we will consider the inner workings of an LSTM cell and discuss why it is used in the implementation of RNNs.

At its core, an LSTM cell is a specialized type of RNN cell that introduces a memory cell and three gating mechanisms: the input gate, the forget gate, and the output gate. These gates regulate the flow of information within the LSTM cell, allowing it to selectively retain or discard information at each time step.

The memory cell in an LSTM plays a important role in preserving information over long sequences. It acts as an internal memory that can store and propagate information across multiple time steps. The memory cell is updated using a combination of the current input, the previous memory cell state, and the output from the forget gate and input gate.

The forget gate determines which information from the previous memory cell state should be discarded. It takes as input the previous output and the current input and produces a forget vector, which is element-wise multiplied with the previous memory cell state. This allows the LSTM cell to forget irrelevant information and retain important information.

The input gate, on the other hand, decides which new information should be stored in the memory cell. It takes the current input and the previous output as input and produces an input vector. This input vector is then combined with the forget vector to update the memory cell state.

Finally, the output gate determines which information from the memory cell should be outputted. It takes the current input and the previous output as input and produces an output vector. This output vector is then element-wise multiplied with the updated memory cell state to produce the final output of the LSTM cell.

The use of LSTM cells in the implementation of RNNs is motivated by their ability to capture long-term dependencies in sequential data. Traditional RNNs suffer from the vanishing gradient problem, where gradients diminish exponentially as they propagate back through time, making it difficult for the network to learn long-term dependencies. LSTM cells mitigate this problem by introducing the memory cell and the gating mechanisms.

By selectively retaining or discarding information, LSTM cells can effectively maintain relevant information over long sequences and prevent the vanishing gradient problem. This allows RNNs with LSTM cells to capture dependencies that span across many time steps, making them suitable for tasks such as language modeling, speech recognition, and machine translation.

The LSTM cell is a important component of RNNs used in deep learning. It overcomes the limitations of traditional RNNs by introducing a memory cell and gating mechanisms that enable the network to capture long-term dependencies in sequential data. This makes LSTM cells a powerful tool for various applications in the field of artificial intelligence.

Other recent questions and answers regarding EITC/AI/DLTF Deep Learning with TensorFlow:

  • Does a Convolutional Neural Network generally compress the image more and more into feature maps?
  • Are deep learning models based on recursive combinations?
  • TensorFlow cannot be summarized as a deep learning library.
  • Convolutional neural networks constitute the current standard approach to deep learning for image recognition.
  • Why does the batch size control the number of examples in the batch in deep learning?
  • Why does the batch size in deep learning need to be set statically in TensorFlow?
  • Does the batch size in TensorFlow have to be set statically?
  • How does batch size control the number of examples in the batch, and in TensorFlow does it need to be set statically?
  • In TensorFlow, when defining a placeholder for a tensor, should one use a placeholder function with one of the parameters specifying the shape of the tensor, which, however, does not need to be set?
  • In deep learning, are SGD and AdaGrad examples of cost functions in TensorFlow?

View more questions and answers in EITC/AI/DLTF Deep Learning with TensorFlow

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/DLTF Deep Learning with TensorFlow (go to the certification programme)
  • Lesson: Recurrent neural networks in TensorFlow (go to related lesson)
  • Topic: RNN example in Tensorflow (go to related topic)
  • Examination review
Tagged under: Artificial Intelligence, Long Short-term Memory, LSTM Cell, Memory Cell, RNN Implementation, Vanishing Gradient Problem
Home » Artificial Intelligence / EITC/AI/DLTF Deep Learning with TensorFlow / Examination review / Recurrent neural networks in TensorFlow / RNN example in Tensorflow » What is the LSTM cell and why is it used in the RNN implementation?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (106)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Reddit publ.)
  • About
  • Contact
  • Cookie Policy (EU)

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on Twitter
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF), governed by the EITCI Institute since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    Follow @EITCI
    EITCA Academy

    Your browser doesn't support the HTML5 CANVAS tag.

    • Web Development
    • Quantum Information
    • Artificial Intelligence
    • Cybersecurity
    • Cloud Computing
    • GET SOCIAL
    EITCA Academy


    © 2008-2026  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    CHAT WITH SUPPORT
    Do you have any questions?
    We will reply here and by email. Your conversation is tracked with a support token.